H(t)=-16t^2+80t+0

Simple and best practice solution for H(t)=-16t^2+80t+0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(t)=-16t^2+80t+0 equation:



(H)=-16H^2+80H+0
We move all terms to the left:
(H)-(-16H^2+80H+0)=0
We get rid of parentheses
16H^2-80H+H-0=0
We add all the numbers together, and all the variables
16H^2-79H=0
a = 16; b = -79; c = 0;
Δ = b2-4ac
Δ = -792-4·16·0
Δ = 6241
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{6241}=79$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-79)-79}{2*16}=\frac{0}{32} =0 $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-79)+79}{2*16}=\frac{158}{32} =4+15/16 $

See similar equations:

| 3x2+4=436 | | 5(j+2)=3j+18 | | 3x+7(-5x-9)=1 | | 7/5=n/15 | | 9/2w=-5/3 | | -x2+4x-54=0 | | 5x+2+6=360 | | (3-5x)^(4/5)-6=10 | | 11/25=2/5t | | 4d÷9+48=389 | | 0.7=d/0.5 | | 3x+7=-5x+7 | | n-3.45=8.95 | | 1/4(8-6x+12)=1 | | 3x+4=6x=19 | | Y=10,000(0.97)x | | 25.85=b+11.8 | | 4u+12=2(u+8) | | 55=k-4 | | 5+3(4)^x-1=12 | | 2y+5=8y-55 | | 10a÷2+8=18 | | 4/5+17/35=2/7x | | 3.2x=2.88 | | 2.90t+11.70=52.30 | | 10a/2+8=18 | | 2y-6=3y+24 | | 1/4(8-6x+12)=17 | | -12y+9y=18 | | -1.2=x/4+5.2 | | 8=-18y8 | | 3(v-7)-6v=-9 |

Equations solver categories